Long Lane Church of England Primary School Calculations Policy

Introduction

This policy has been produced to ensure consistency and progression in teaching throughout Long Lane Church of England Primary School.

The Primary Framework for Mathematics provides a structured and systematic approach to the teaching of calculation. There is considerable emphasis on teaching mental calculation methods.

Children are introduced to the processes of calculations through practical, oral and mental activities. Through these activities, they consolidate their understanding of number facts and begin to develop ways of recording to support their thinking and calculation methods.

As children's mental and informal 'jotting' methods are strengthened, they become ready to use more efficient written methods.

Aims

It is our aim at Long Lane Church of England Primary School that by the end of Year 6 -

- children will be equipped with mental, written and calculator methods that they understand and use correctly and appropriately for the calculation required.
- that when faced with a calculation, children should also have the strategies to check its accuracy.
- children to be able to select an efficient method of their choice (whether this be mental, written or using a calculator) that is appropriate for a given task.

They will do this by always asking themselves:

- Can I do this in my head?
- Can I drawings and jottings?
- Do I need to use a pencil and paper procedure?
- Do I need a calculator?

This policy aims to identify the progression in each of the four operations that the children will follow. Each stage is built upon previous experiences and all stages are levelled according to National Curriculum Levels to enable teachers to teach the most appropriate methods of written calculation for their children.

Children should be encouraged to see mathematics as both a written and spoken language. Teachers and other adults working with children in supporting mathematics should support and guide children in learning through the following important stages:

- developing the use of pictures and a mixture of words and symbols to represent numerical activities;
- using standard symbols and conventions;
- use of jottings to aid a mental strategy;
- use of pencil and paper procedures;
- use of a calculator.

Through teaching and learning we ensure that children:

- Have a secure knowledge of number facts and a good understanding of the four operations.
- Understand the relationships between numbers.
- Are able to use this knowledge to carry out calculations mentally and to apply general statements when using one-digit and two-digit numbers and particular strategies to special cases involving bigger numbers.
- Make use of diagrams and informal jottings to help record steps and part answers when using mental methods that generate more information than can be kept in their heads.
- Have an efficient and reliable written method of calculation for each operation that children can apply with confidence when undertaking calculations that they cannot carry out mentally.
- Use a calculator effectively, using their mental skills to monitor the process, check the steps involved and decide if the numbers displayed make sense.

Objectives

At Long Lane Church of England Primary School, we follow the Primary National Curriculum for Mathematics, supported where appropriate by the Department for Education. The wording of learning objectives must be altered to suit the ability of the children to ensure they understand what they are learning at an age appropriate level.

Mathematics in EYFS

Mathematics is a specific area within the EYFS. Mathematical development involves providing children with the opportunities to practise and improve their skills in counting numbers, calculating simple addition and subtraction problems and to describe shape, space and measures.

Children need lots of opportunities to explore in a mathematical way, by playing and exploring children investigate and experience things. When children are actively learning, they concentrate and keep on trying if they encounter difficulties, as well as experiencing achievement. Children need to create and think critically, and also to develop their own ideas. They need to make links between ideas and be able to develop strategies.

Mathematics is taught through a mix of planned, purposeful play with a mix of adult and child led activities. A stimulating environment which supports their continuing development is required to build them into confident mathematicians.

The areas are split into 2 - Numbers and Shape, Space and Measures.

Numbers

The children are expected to achieve the following by the end of EYFS:
Count reliably with numbers 1 to 20
Place order and say which number is one more or one less than a given number.
Using quantities and objects, add and subtract 2 single digit numbers, and count on or back to find the answer.

Solve problems including doubling, halving and sharing.
The understanding of number is all around us every day in our daily routine, children need access to this.

Shape, Space and Measures

The children are expected to achieve the following by the end of EYFS:
Use everyday language to talk about size, weight, capacity, position, distance, time and money. To compare quantities and objects and to solve problems.

To recognise, create and describe pattern.
To explore characteristics of everyday objects and shapes and use mathematical language to describe them.

Children actively explore and experience shape, space and position as part of their everyday play, including messy play and cooking.

General Progression

- Establish mental methods based on a good understanding of place value.
- Use of informal jottings to aid mental calculations.
- Develop use of an empty number line to help mental imagery and aid recording.
- Use of partitioning and recombining to aid informal methods.
- Introduce expanded written methods.
- Develop expanded written methods into compact standard written form.

Up to Level 3 informal written recording is practised regularly and is an important part of learning and understanding. More formal written methods follow when a child is able to use a wide range of mental strategies (sometimes before Level 3 if children/a child are secure with informal methods).

This policy contains the key pencil and paper procedures that are to be taught throughout the school. It has been written to ensure consistency and progression throughout the school. Although the main focus of this policy is on pencil and paper procedures it is important to recognise that the ability to calculate mentally lies at the heart of mathematics. Mental calculation is not at the exclusion of written recording and should be seen as complementary to and not as separate from it. In every written method there is an element of mental processing. Written recording both helps children to clarify their thinking and supports and extends the development of more fluent and sophisticated mental strategies.

Methods are designed to be taught to the level the children are working at rather than in specific year group e.g. in Year 2, strategies for Level 1, 2 and 3 could be taught according to the ability of the children. Despite children being taught levelled written methods; they should not be discouraged from using previously taught methods with which they are secure, while the new concepts are becoming embedded. The long term aim is for the children to be able to select an efficient method of their choice that is appropriate for a given task.

Progression of Mental Skills

- 1:1 correspondence.
- Counting forwards and backwards in 1's from any number.
- Say 1 more/1 less with numbers up to 10,20.
- Number bonds to 5, 10 and 20.
- Doubling/halving up to 10, 20.
-Counting forwards and backwards in 2's, 5's and 10's from any number.
- Estimating numbers up to 100.
- Number facts up to 20.
- Understanding of place value and partitioning mentally.
- Rounding to the nearest 10, 100, 1000.
- Times tables - 2, 5, 10, 3, 6, 12, 4, 8, 9, 11, 7.
- Inverse operations between + and - and \times and \div.
- Near multiples to 100.
- Number bonds to 100.
- Adjusting by 1 when using adding 9 and 11 etc.

Vocabulary - subtract, subtraction, take-away, minus, less than, difference, decrease, leave, how many left

	To be able to understand multiplication as an array. To be able to understand multiplication as repeated addition using a number line. $4 \times 5=20$ $+5+5+5+5$ MAMA 0510152025 To be able to derive multiplication facts for the 2, 5 and 10 times tables and begin to derive related division facts. $\begin{aligned} & 6 \times 5=30 \\ & 30 \div 5=6 \text { or } \\ & 30 \div 6=5 \end{aligned}$	$\begin{aligned} & 10 \times 3=30 \\ & 3 \times 3=9 \\ & 30+9=39 \end{aligned}$ To be able to solve problems involving multiples of 10, 100 and 1000. $\begin{aligned} & \begin{array}{l} 6 \times 2 \\ 2 \times 10 \\ =6 \times 2 \times 10 \\ =120 \end{array} \end{aligned}$ To multiply in any order	HTU. 72×38 \times 30 8 2160 $+\frac{576}{2736}$ 1 To be the co metho multip TU $\times \mathrm{U}$ 24×5 24 $\times 24$ $\frac{5}{20}$ 2	 $=$ 70 2100 560 ble to mpact of ication	2 60 16	
Vocabulary - multiply, multiplication, multiple, times, lots of, groups of, product, 10 times...						

Long Lane Church of England Primary School - Division Written Methods				
Level 1	Level 2	Level 3	Level 4	Level 5
To be able to count in 2's 5's and 10's. To be able to share items into equal groups.	To be able to understand the concept of division and sharing and grouping. To be able to represent problems using pictures and symbols. 6 sweets are shared between 2 people how many do they each get? To be able to understand division as repeated addition. $12 \div 3=$ 123456789101112 To able to record division using \div and $=$.	To be able to understand division as repeated addition with remainders. $13 \div 3=$ 12345678910111213 To be able to divide using a blank number line and grouping the divisor. $72 \div 5=$ How many lots of 5 in 72 ? 10 lots 4 lots 2 left of $5=50$ of $5=20$ over 0507072 $10+4=14 r 2$ To be able to complete number sentences where the missing numbers if shown by a symbol. $35 \div \triangle=7$	To be able to divide by chunking (HTU). $972 \div 36=$ 27 36\|972 72020×36 2527×36 To be able to use the compact division method showing the remainder as a decimal. $\begin{aligned} & 3859 \div 6= \\ & \frac{643.17}{\mid 32114} \\ & 6 \mid 3859.00 \end{aligned}$	To be able to express the remainder as a fraction. $9 \div 4=2.25$

